Journal of Orgenometallic Chemustry, 132 (1977) 387-393
© Elsevier Sequoia S A, Lausanne - Printed in The Netherlands

CRYSTAL AND MOLECULAR STRUCTURE OF $\operatorname{Cr}(\mathrm{CO})_{5}\left(\mathrm{SCMe}_{2}\right)$, A THIOKETONE COMPLEX *

BARBARA A KARCHER and ROBERT A JACOBSON *
Ames Laboratory-ERD.A and Department of Chemistry, Iowa State University Ames, Iowa 50011 (USA)

(Recerved November 22nd, 1976)

Summary

The crystal structure of $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{SCMe}_{2}\right)$ has been determined by threedimensional single crystal X-ray analysis The compound crystallizes in the mono clinic space group $P 2_{1} / a$ with $a=10468(8), b=11879(5), c=9575(6) \AA$ and $\beta=10814(9)^{\circ}$ Least squares refinement of 1435 reflections resulted in a final conventional crystallographic discrepancy factor of $R=0075$ The coordination around the chromium atom is essentially octahedral, the $\mathrm{Cr}-\mathrm{C}$ distance opposite the $\mathrm{Me}_{2} \mathrm{CS}$ group is significantly shorter, $1835(12) \AA$, than the remaining $\mathrm{Cr}-\mathrm{C}$ distances (averaging $1898(2) \AA$) The $\mathrm{C}=\mathrm{S}$ distance is $1618(8) \AA$ while the $\mathrm{Cr}-\mathrm{S}-\mathrm{C}$ angle is $1208(4)^{\circ}$, and the chromum atom devates from the plane described by the $\mathrm{Me}_{2} \mathrm{CS}$ molety by only $02 \AA$

Introduction

Few metal complexes of thoketones have been reported since most thioketones are unstable and polymerize rapıdly Recently Gingerıch and Angelicı [13], as reported in the prevous article, have succeeded in preparing complexes of the type $\mathrm{M}(\mathrm{CO})_{5}\left(\mathrm{~S}=\mathrm{CR}_{2}\right)$ in which the thioketone was stabilized by coordination to the metal atom, where $\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, or W , and $\mathrm{R}=\mathrm{Me}$, Et or Ph . In order to more accurately characterize the coordination of a thioketone to a metal, we decided to carry out a single crystal X-ray investigation of $\mathrm{Cr}(\mathrm{CO})_{5}-$ ($\mathrm{S}=\mathrm{CMe}_{2}$)

Experimental

Crystal data $\mathrm{CrSO}_{5} \mathrm{C}_{8} \mathrm{H}_{6}, \mathrm{~mol}$ wt 266 19, monoclinic $P 2_{1} / a, a=10468(8)$. $b=11879(5), c=9575(6) \AA, \beta=10814(9)^{\circ}, V=113150 \AA^{3}, \rho_{\mathrm{c}}=1562 \mathrm{~g}$

[^0]$\mathrm{cm}^{-3}, Z=4$, Mo- $K_{\alpha}(\lambda=0.70954 \AA), \mu=12.38 \mathrm{~cm}^{-1}$
Crystals were obtained from R J. Angelici and R.G W Gingerich and a nearly spherical crystal of diameter 0.2 mm was wedged into a Lindeman glass capillary and mounted on a four-circle diffractometer. Initial ω-oscillation photographs were taken and these verified that the crystal was indeed single Fourteen reflectoons were selected from these photographs and their approximate positions were input into our automatic indexing program [1] The reduced cell and reduced cell scalars that resulted indicated monoclinic symmetry Subsequent ω oscullation Polaroid photographs taken around each of the three cell axes in turn verified the $2 / m$ Laue symmetry as well as the reciprocal lattice spacings predicted by the program

Accurate unit cell parameters and their standard deviations were obtained by a least squares fit to the ± 20 values of eleven independent high angle reflections measured on a previously alıgned fou-circle diffractometer.

Collection and reduction of X-ray intensity data Data were collected at room temperature using an automated four-curcle diffractometer designed and built in the Ames Laporatory and previously described by Rohrbaugh and Jacobson [2] The diffractometer is interfaced to a PDP-15 computed in a realtince mode and is equipped with a scintillation counter Graphite reflectedbeam monochromated Mo- K_{c} radiation ($\lambda=070954 \AA$) was used for data collection. Within a sphere of $20 \leqslant 50^{\circ}\left(\sin \theta / \lambda=0595 \AA^{-1}\right)$, all data in the hkl and $h k \bar{l}$ octants were measured using an ω-stepscan technique

As a general check on crystal and electronic stability, the intensities of three standard reflections were remeasured every 75 reflections These standard reflections were not observed to vary to any significant degree during the entire period of data collection In all 2224 reflections were recorded in this manner Examination of the data revealed the following systematic absences $h 0 l$ when $h=2 n+1$ and $0 k 0$ when $k=2 n+1$ These absences uniquely determine the space group as $P 2_{1} / a$

The intensity data were corrected for Lorentz and polanzation effects, but absorption corrections uere not deemed necessary, the maximum and minimum transmission factors were 0906 and 0862 , respectively. The estimated vanance in each intensity was calculated by
$\sigma_{I}^{2}=C_{T}+2 C_{B}+\left(0.03 C_{T}\right)^{2}+\left(003 C_{B}\right)^{2}$
where C_{T} and C_{B} represent the total and background counts, respectively, and the factor 003 represents an estimate of non-statistical eriors The estimated deviations in the structure factors were calculated by the finite difference method [3] After correction, 1435 reflections with $I_{0}>3 \sigma\left(I_{0}\right)$ were retaned for use in the structure solution and refinement During the later stages of the investigation it was discovered that six large reflections suffered fiom secondary extinction effects These effects were corrected via the approximation $I_{o}^{\prime}=$ $I_{0} /\left(1+g I_{c}\right)$ where an average value for $g, 19315 \times 10^{-5}$, was determined using the ten largest I_{o} 's

Solution and refinement

The position of the chromium atom was obtained from an analysis of a sharpened three-dimensional Patterson function. All other non-hydrogen atoms
were found by successive structure factor [4] and electron density map calculations [5]. Analysis of an electron density difference map also revealed some small residual electron density near the carbon. Methyl hydrogen atoms were therefore added such as to complete the tetrahedron around the carbon and best fit the residual electron density. The C-H distances were set equal to $10 \AA$, and all isotropic thermal parameters for hydrogen were fixed at $40 \AA^{2}$

Refinement of the positional and anisotropic thermal parameters of all nonhydrogen atoms by a full-matrix least-squares procedure minimizmg the function $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{e}}\right|\right)^{2}$, where $w=1 / \sigma^{2}(F)$, yielded a final crystallographic discrepancy factor, $R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|$, of 0075 . The final weighted discrepancy factor, $R_{w}=\left\{\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right\}^{1 / 2}$, was 0.11

Description of the structure and discussion

A computer-generated perspective drawing [6] of $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{SCMe}_{2}\right)$ is shown in Fig 1, and the more important bond distances and angles ae given in Tables 1 and 2, respectively *

The coordination around the chromium is basically octahedral, the $\mathrm{C}-\mathrm{Cr}-\mathrm{C}$ angles ranging from $885(3)$ to $909(3)^{\circ}$ The sulfur atom however is slightly displaced from the octahedral position, forming $\mathrm{S}-\mathrm{Cr}_{\mathrm{r}}-\mathrm{C}$ angles of $853(3)$, 87.8(3), 94.6(3) and 95.8(4) ${ }^{\circ}$ with C(2), C(1), C(4) and C(3), respectively (Table 3) This distortion appears to be due to a steric effect arising from repulsion between the $\mathrm{C}(8)$ methyl group and the adjacent carbonyl groups, the shortest contacts being 3357 and $3584 \AA$ (Table 2)

Fig 1 A computer-generated perspective draving of $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{SCV}_{2}\right)$ excluding the hyorogen atoms

[^1]TABLE 1a
F:NAL ATOMIC POSITIONAL PARAMETERS (represented in fractional unt cell coordinates)

Atom	x	y	2
Cr	$029805(13)$	$011028(9)$	$017649(13)$
S	$01753(2)$	$00848(2)$	03455 (2)
C(1)	$01303(9)$	01160 (6)	00245 (9)
O(1)	$00337(7)$	$01181(5)$	$\rightarrow 00737(7)$
C(2)	- 2981(8)	-00485(7)	$01661(8)$
$O(2)$	$03012(7)$	-01456(5)	$01579(7)$
C(3)	$04706(10)$	$01026(7)$	$03187(10)$
O(3)	$05753(7)$	$00957(6)$	0 1002(9)
C(4)	02997 (9)	$02706(7)$	01891 (9)
O(4)	0 2988(8)	0 3662(6)	019.41 (8)
C(5)	03821 (10)	00343(10)	$00343(10)$
O(弓)	$04331(9)$	$01233(6)$	-00553(9)
C(6)	02247 (9)	01431 (6)	05061 (8)
C(7)	$01516(13)$	$01162(9)$	0 6146(12)
C(8)	$03385(12)$	$02217(10)$	O 5605(11)
H(17)	01191	01867	- 6480
H(27)	02128	00750	07002
H(37)	00720	00665	05652
H(48)	03077	03005	05437
H(58)	03836	02086	06689
H(68)	04068	02063	05079

TABLE 1b
FINAL ATOMIC THERMAL PARAMETERS ${ }^{a}$

Atom	Atome temperature factors $\times 10^{2}$					
	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	ρ_{23}
Cr	$122(2)$	0 66(1)	$118(2)$	-002(1)	024 (1)	$004(1)$
S	$137(3)$	$087(2)$	130 (3)	-010(2)	$033(2)$	-014(2)
C(1)	15 (1)	$082(6)$	$14(1)$	$005(7)$	$033(9)$	$006(7)$
O(1)	1 52(9)	$135(7)$	$19(1)$	-009(6)	-0 04(8)	$017(6)$
C(2)	$13(1)$	$085(7)$	14 (1)	$002(7)$	$057(8)$	$005(6)$
O(2)	$23(1)$	$077(5)$	2 4(1)	$005(6)$	07 (1)	000 (6)
C(3)	14 (1)	091(7)	$18(1)$	-004(\%)	03 (1)	$003(7)$
O(3)	$124(8)$	$171(8)$	2 6(1)	$009(6)$	000 (9)	0 17(8)
C(4)	15(1)	$082(7)$	$151(1)$	$002(7)$	0 34(9)	-008(7)
O(4)	$31(2)$	$084(6)$	26 (1)	-019(7)	0 6(1)	-006(6)
C(5)	$19(1)$	$092(7)$	1 6(1)	$003(8)$	06 (1)	$031(7)$
0 (5)	23 (1)	$147(8)$	2 2(1)	018(7)	1 1(1)	$038(7)$
C(6)	$13(1)$	$080(6)$	1 4(1)	$018(7)$	-31(9)	$002(6)$
C(7)	$19(3)$	$107(9)$	1 9(2)	-012(10)	$07(1)$	--016(9)
C(8)	$15(2)$	13 (1)	17 (2)	$\rightarrow 3(1)$	- 2(1)	-0 2(1)
H(17)	400					
H(25)	400					
H(E7)	400					
H(48)	400					
H(58)	409					
H(68)	400					

[^2]TABLE 2
SELECTED BOND DISTANCES (A)

$\mathrm{Cr}-\mathrm{S}$	$2377(4)$	S-C(6)	1618 (8)
$\mathrm{Cr}-\mathrm{C}(1)$	1961 (8)	C(6)-C(7)	$1497(17)$
$\mathrm{Cr}-\mathrm{C}(2)$	$1889(8)$	C(6)-C(8)	$1477(14)$
$\mathrm{Cr}-\mathrm{C}(3)$	$1896(9)$	C(4)-C(8)	3584(15)
$\mathrm{Cr}-\mathrm{C}(4)$	$1905(8)$	$\mathrm{O}(4)-\mathrm{C}(8)$	$3809(15)$
$\mathrm{Cr}-\mathrm{C}(5)$	$1835(12)$	$C(3)-C(8)$	$3357(17)$
		$O(3)-C(8)$	3621(17)
$\mathrm{C}(1)-\mathrm{O}(1)$	$1147(10)$		
C(2)-O(2)	$1156(11)$	$\mathrm{O}(1)-\mathrm{O}(1)^{a}$	3314
$\mathrm{C}(3)-\mathrm{O}(3)$	1 132(11)	$\mathrm{O}(1)-\mathrm{O}(2)^{a}$	3359
$\mathrm{C}(4)-\mathrm{O}(4)$	$1146(1.1)$	$C(1)-O(2){ }^{b}$	3516
C(5)-O(5)	$1153(16)$	O(1)-O(2) ${ }^{b}$	3519
		$\mathrm{C}(5)-\mathrm{O}(1)^{c}$	3270
		$\mathrm{C}(5)-\mathrm{O}(4){ }^{c}$	3831
		O(1) ${ }^{b}-\mathrm{C}(1)^{c}$	3377
		$\mathrm{O}(1)^{b}-\mathrm{O}(1)^{c}$	3314

${ }^{a}$ Via symmetry operation $(x, 2, z)^{b}$ Via symmetry operation ($\left.1 / 2-x, 1 / 2+2 z\right)^{c}$ Via symmetri operation ($14+2 \times 3-13$ 2)

The $\mathrm{Cr}-\mathrm{C}$ distance trans to the $\mathrm{Me}_{2} \mathrm{CS}$ group is significantly shorter. $1835(12)$ \& , than the remaining $\mathrm{Cr}-\mathrm{C}$ distances (averaging 1 898(8) \AA) Such a shortenmg has been observed in other metal carbonyl complexes when a CO group is trans to a poorly π-bonding ligand and can be attributed to a resultant increase in the π-bonding of the CO

The $\mathrm{Cr}-\mathrm{C}$ equatorial distances compare quite well with those previously reported, namely. $190 \AA$ in $(\mathrm{MeSCN}) \mathrm{Cr}(\mathrm{CO})_{5}$ [7], $188 \AA$ in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PCr}(\mathrm{CO})_{5}$ [8], and $1903 \AA$ in $\mathrm{Me}_{3} \mathrm{PSCr}(\mathrm{CO})_{5}$ [9]

The $\mathbf{C}-\mathrm{O}$ distances are all essentially equal to within three standard devations, averaging $1146 \AA$ The $C=S$ distance $1618(8) \AA$, is significantly shorter than the $171 \AA$ distance found in ethylene thiourea [10] and thioacetamide [11], but longer than the 1561 A distance in HNCS [12]

Least-squares planes and deviations from these planes are given in Table 4 As can be seen from this table, the $\mathrm{Me}_{2} \mathrm{CS}$ group shows no significant deviation from planarity and the chromium atom also essentially hes in this plane This would be in accord with a model which assumes $s p^{2}$ hybridization at the sulfur and inter action between the sulfur and the chromium via a lone parr in one of these hybnds The $\mathrm{Cr}-\mathrm{S}-\mathrm{C}(6)$ angle of $1208(4)^{\circ}$ is also in excellent agreement with

TABLE 3
SELECTED ANGLES (DEG)

S-CR-C(1)	878 (3)	$\mathrm{C}(6)-\mathrm{S}-\mathrm{Cr}$	$1208(4)$
S-Cr-C(2)	$853(3)$	$C(7)-C(6)-C(8)$	1147 (8)
S-Cr-C(3)	958 (4)		
$S-C r-C(4)$	94 6(3)		
$S-C r-C(5)$	$1739,2)$		
$O(1)-C(1)-C r$	$1755(10)$	$C(1)-C r-C(2)$	906 (3)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Cr}$	$1780(10)$	$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(4)$	901 (3)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Cr}$	$1775(10)$	$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(3)$	$887(3)$
O(4)-C(4)-Cr	$1787(8)$	C(2)-Cr-C(4)	$909(3)$
$\mathrm{O}(5)-\mathrm{C}(5)-C x$	179 4(13)		

PABLE 4
EQUATIONS OF LEAST SQUARES PLANES AND INTERPEANAR ANGLES

Pianc I fitting $(C 5-C(1)-C(2)-C(3)-C(4))$	
$07090 X+002899 Y-070671 Z-$	
$077 . t 33=0$	
Atom	Distance from plane
	(A)
$C r$	-00390
$C(1)$	00224
$C(2)$	-00031
$C(3)$	00225
$C(4)$	00027

Planc II fitting ($\mathrm{Cr}-\mathrm{S}-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$) $0067599 X+-002144 \geq+073659 Z-$ $287378=0$

Atom	Distance from plane (A)	Atom	Distan (A)	
Cr	00339	Cr	000	
S	-00351	S	-000	
C(2)	00256	C(2)	-0 00	
C(4)	00219	C(4)	-0 00	
C(5)	-00463			
Plane III fitting ($\mathrm{Cr}-\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(5)$) $-004078 x+099424 z-009909 z-$ $131559=0$		Interplanar Angles		
		Plane	Plane	Angle (deg)
Atorn	Distance from plane (A)	I	II	8751
		1	III	8598
		I	IV	8363
Cr	00408	1	V	8602
S	$\longrightarrow 0361$	II	III	8861
C(1)	00234	11	IV	5061
C(3)	00202	III	IV	4117
C(5)	-00483			

$\mathrm{F}_{1} \mathrm{~g} 2$ Unir cell stereograph of $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{SCMe}_{2}\right)$
such a model In addition, this plane approxımately bisects the angle between the planes formed by $S, C T, C(2), C(4), C(5)$ and $S, C r, C(1), C(3), C(5)$, mdicating rotation about the $\mathrm{Cr}-\mathrm{S}$ bond to minimize repulsive effects.

Unit cell packing is illustrated in Fig. 2 and no abnormally short contacts are present, the shortest intermolecular distance being $3270 \AA$ between $O(1)$ and $C(5)$ in adjacent molecules

References

I R A. Jacobson J Appi Crystallogr, 9 (1976) 115
2 W J Rohrbaugh ana R A Jacobson Inorg Chem 13 (1974) 2535
3 SL Lawton and R A Jacobson Inorg Chem, 7 (1968) 2124
4 WR Busing K O Martin and H S Levy, ' ORFLS A Fortran Crystallographie Least Squares Program" US Atomic Energy Report ORNL-TM-305 Oak Ridge Natıonal Laboratory Odk Ridge Tennessee 1962
5 C A Hubbard Co Quichsall and R A Jacobson The rast Fourier Algorithm and the Piograms ALFF ALFFDP ALFFPROJ ALFFT and FRIEDEL US Atomic Energ3 Commission Report iS-26 55 Iowa State University and Institute for Atomic Research Ames Iowa 1971
6 CK Johnson, ORTEP-II A Fortran Thermal-Elipsoid Plot Program for Crystal Structure Illustrations, US Atomic Energy Commission Repori ORNL-3734 (Sccond Revision with Supplemental Instructions) Oaik Ridge National Laboratory, Oak Ridge, Tennessee, 1971
7 BJ Helland M H Quick R A Jacobs and R J Angelici, J Organometal Chem 132 (1977) 95
8 H J Plastas, J M Stewart and S O Gnm, Inorg Chem 12 (1973) 265
9 EN Baker and B R Reay, J Chem Soc Dalton, (1973) 2205
10 L E Sutton (Ed) Tables of Interatomic Distances and Configuration in Molecules and Ions The Chemical Socsety, Burlangton House London, W I 1958
11 L E Sutton (Ed) Tables of Interatomic Distances and Configuration in Molecules and Ions Supplement 1956-1959 The Chemical Socrety Burlungton House London W I 1965
12 L E Sutton (Ed) Tables of Interatomic Distances and Configuration in Molecules and Ions The Chemical Societs, Burlington House London W I 1958
13 R W Gingerich and R J Angelici, J Organometal Chem, 137 (1977) 377

[^0]: * Prepared for the US Energy Research and Development Administration under Concract No 4.7405-eng-82

[^1]: * The table of structure íactors has been deposited as NAPS Document No 2987 (8 pages) Order from ASIS/NAPS c/o Microfiche Publications, P O Box 3513, Grand Central Station, New York, N Y, 10017 A copy may be secured by citing the document number remitting S5 for photocopies ors 3 for microfiche Adiance payment is required Mahe checks payable to Microfiche Publications

[^2]: ${ }^{c}$ Tre β_{L} are defined by $T=\exp \left\{-\left(h_{2} \beta_{11}+\hbar^{2} \beta_{22}+t^{2} \beta_{33}+2 h r \beta_{12}+2 h 1 \beta_{13}+2 k l \beta_{23}\right)\right\}$ If only the β_{11} column is Lsted this corresponds to an esotropic temperature factor

